Dose-response parameters and microdosimetric quantity [3]

Neutrons
Neutrons
Laboratory Source Reference Types of Mean energy Linear term (Dics/cell/Gy)** Quadratic term (Dics/cell/Gy2)** Maximum RBE***
neutrons E (MeV) α/Gy ± S.E. Fixed at β=k=5.355×10-2 RBEm ± S.E.
1 HU-T(d,n)He K1 Monoenergetic 14.1 0.229 ± 0.020 5.355×10-2 14.136 ± 1.235
1 NIRS-Be(d,n)B K1, K2 Monoenergetic 2.03 0.566 ± 0.094 5.355×10-2 34.938 ± 5.802
1 KUR-Nth K2 Thermal 2.50E-08 0.920 ± 0.028 5.355×10-2 56.815 ± 1.747
1 TKY-GH K3, K4 Fission 1.354 1.197 ± 0.023 5.355×10-2 73.889 ± 1.432
1 TKY-TC K3, K4 Fission 0.477 1.219 ± 0.024 5.355×10-2 75.235 ± 1.506
1 TKY-MD K3, K4 Fission 0.009 1.164 ± 0.045 5.355×10-2 71.852 ± 2.778
1 TKY-BL K3 Fission (filtered) 0.21 1.237 ± 0.033 5.355×10-2 76.358 ± 2.006
1 TKY-M12 K3 Fission (filtered) 0.045 1.123 ± 0.039 5.355×10-2 69.296 ± 2.380
1 TKY-M27 K3 Fission (filtered) 0.017 1.056 ± 0.019 5.355×10-2 65.165 ± 1.186
1 KUR-U K4 Fission 1.985 1.172 ± 0.070 5.355×10-2 72.315 ± 4.314
1 KUR-B1 K3 Fission (filtered) 0.06 1.195 ± 0.019 5.355×10-2 73.740 ± 1.186
1 UTR-Air K3, K4 Fission 0.101 1.132 ± 0.044 5.355×10-2 69.888 ± 2.723
1 UTR-Bi K3 Fission (filtered) 0.138 1.028 ± 0.084 5.355×10-2 63.467 ± 5.214
1 UTR-Fe K3, K4 Fission (filtered) 0.196 0.992 ± 0.038 5.355×10-2 61.239 ± 2.374
1 UTR-PE K3, K4 Fission (filtered) 0.1 1.015 ± 0.078 5.355×10-2 62.644 ± 4.845
2 GSF-QM G1, G8 Quasimonoenergetic 0.144 0.786 ± 0.066 5.355×10-2 66.610 ± 5.593
2 GSF-QM G2, G8 Quasimonoenergetic 0.565 0.813 ± 0.052 5.355×10-2 68.898 ± 4.407
2 T(d,n) G3 Monoenergetic 14.5 0.204 ± 0.017 5.355×10-2 17.288 ± 1.441
2 T(d,n) G4 Monoenergetic 15.0 0.127 ± 0.025 5.355×10-2 10.763 ± 2.119
2 Nth G5 Thermal 2.50E-08 0.517 ± 0.023 5.355×10-2 43.814 ± 1.949
2 Q-M G6 Quasimonoenergetic 41 0.146 ± 0.016 5.355×10-2 12.373 ± 1.356
2 Q-M G6 Quasimonoenergetic 60 0.115 ± 0.026 5.355×10-2 9.746 ± 2.203
2 MEDAPP G7 Monoenergetic 1.9 0.332 ± 0.020 5.355×10-2 28.136 ± 1.695
2 7Li(p,n)7Be G8 Monoenergetic 0.036 0.664 ± 0.098 5.355×10-2 56.271 ± 8.305
2 7Li(p,n)7Be G8 Monoenergetic 0.385 0.935 ± 0.073 5.355×10-2 79.237 ± 6.186
2 T(p,n)3He G8 Monoenergetic 1.151 0.458 ± 0.041 5.355×10-2 38.814 ± 3.475
2 D(d,n)3He G8 Monoenergetic 4.85 0.320 ± 0.024 5.355×10-2 27.119 ± 2.034
2 T(d,n)4He G8 Monoenergetic 14.6 0.162 ± 0.015 5.355×10-2 13.729 ± 1.271
2 Fission G9, G8 Fission 1.6 0.400 ± 0.020 5.355×10-2 33.898 ± 1.695
2 Fission G10, G8 Fission 1.6 0.370 ± 0.020 5.355×10-2 31.356 ± 1.695
3 Filtered H1, H2 Filtered fission 0.024 0.821 ± 0.031 5.355×10-2 66.802 ± 2.522
3 Filtered H3 Filtered fission 0.024 0.872 ± 0.032 5.355×10-2 70.952 ± 2.604
3 Fission H4 Fission 0.7 0.835 ± 0.010 5.355×10-2 67.933 ± 0.838
3 Fission H4 Fission 0.9 0.728 ± 0.024 5.355×10-2 59.211 ± 1.912
3 Be(d,n) H-4 Monoenergetic 7.6 0.478 ± 0.033 5.355×10-2 38.885 ± 2.718
3 T(d,n) H-4 Monoenergetic 14.7 0.262 ± 0.040 5.355×10-2 21.286 ± 3.222
3 252Cf H-5 Fission 2.13 0.600 ± 0.010 5.355×10-2 48.820 ± 0.814
3 T(d,n) H-6 Monoenergetic 14.9 0.195 ± 0.018 5.355×10-2 15.867 ± 1.465
3 Fe filtered H-1 Filtered fission 0.024 0.759 ± 0.026 5.355×10-2 61.758 ± 2.116
4 Fission O-2 Fission 0.4 0.896 ± 0.069 5.355×10-2 75.932 ± 5.847
4 Fission O-1 Fission 0.21 1.216 ± 0.092 5.355×10-2 75.062 ± 5.660
4 d(16)+Be O-3 Quasimonoenergetic 6.5 0.416 ± 0.038 5.355×10-2 16.378 ± 1.476
4 d(33)+Be O-3 Quasimonoenergetic 14 0.184 ± 0.092 5.355×10-2 7.232 ± 3.638
4 d(50)+Be O-3 Quasimonoenergetic 21 0.139 ± 0.024 5.355×10-2 5.472 ± 0.961
*) [1]: RBC, Kyoto University, Japan (K). [2]: GSF, Munchen, Germany (G). [3]: NRPB, Harwell, UK (H). [4]: Other laboratories (O)
**) Dose-response of dicentrics was fitted to Y=(αggDg)Dg+(αnnDn)Dn, βgn=k=5.355×10-2/Gy2. Subscript (g) denotes γ-rays and (n) denotes neutrons. Parameters were obtained by iteratively reweighted ML method.
***) Maximum RBE, RBEm=αng. The linear term (αg) for reference radiation (60Co γ-rays) was obtained for the laboratory pooled data.
It was 0.0162/cell/Gy for RBC, 0.0118/cell/Gy for GSF and 0.0123/cell/Gy for NRPB. That of other laboratories was author dependent, where head-to-head experiment is performed for reference radiation.


References
     (K1) Sasaki, M. S. (1971): Radiation-induced chromosome aberrations in human lymphocytes: possible biological dosimeter in man. In; Sugahara, T. and Hag, O. eds., Biological Aspects of Radiation Protection. Tokyo, Igaku Shoin Ltd., Berlin, Springer, pp.81-91.
     (K2) Sasaki, M. S., Endo, S., Ejima, Y., et al. (2006): Effective dose of A-bomb radiation in Hiroshima and Nagasaki as assessed by chromosomal effectiveness of spectrum energy photons and neutrons. Radiat. Environ. Biophys., 45:79-91.
     (K3) Sasaki, M. S., Nomura, T., Ejima, Y., et al. (2008): Experimental derivation of relative biological effectiveness of A-bomb neutrons in Hiroshima and Nagasaki and implication for risk assessment. Radiat. Res., 170:101-117.
     (K4) Sasaki, M. S., Saigusa, S., Kimura, I., Kobayashi, T., Ikushima, T., Kobayashi, K., Saito, I., Sasuga, N., Oka, Y., Ito, T. and Kondo, S. (1992): Biological effectiveness of fission neutrons: energy dependency and its implication for the risk assessment. Proceedings of the International Conference on Radiation Effects and Protection, Ibaraki, pp. 31-35.

     (G1) Schmid, E., Regulla, D., Guldbakke, S., Schlegel, D. and Roos, M. (2002): Relative biological effectiveness of 144 keV neutrons in producing dicentric chromosomes in human lymphocytes compared with 60Co gamma rays under head-to-head conditions. Radiat. Res., 157, 453-460.
     (G2) Schmid, E., Regulla, D., Guldbakke, S., Schlegel, D. and Bauchinger, M. (2000): The effectiveness of monoenergetic neutrons at 565 keV in producing dicentric chromosomes in human lymphocytes at low doses. Radiat. Res., 154, 307-312.
     (G3) Bauchinger, M., Kuhm, H., Dresp, J. et al. (1983): Doseeffect relationship for 14.5 MeV (d+T) neutron-induced chromosome aberrations in human lymphocytes irradiated in a man phantom. Int. J. Radiat. Biol., 43:571-578.
     (G4) Bauchinger, M., Schmid, E., Rimpl, G., et al. (1975): Chromosome aberrations induced in human lymphocytes after irradiation with 15.0 MeV neutrons in vitro. I. Dose-response relation and RBE. Mutation Res., 27:103-109.
     (G5) Schmid, T. E., Oestreicher, U., Molls, M. and Schmid, E. (2013): RBE of thermal neutrons for induction of chromosome aberrations in human lymphocytes. Radiat. Environ. Biophys., 52:113-121.
     (G6) Nolte, R., Muhbrade, K-H., Meulders, J. P., et al. (2005): RBE of quasi-nomoenergetic 60 MeV neutron radiation for induction of dicentric chromosomes in human lymphocytes. Radiat. Environ. Biophys., 44:201-209.
     (G7) Schmid, E., Wagner, F. M., Romm, H. et al. (2009): Dose-response relationship of dicentric chromosomes in human lymphocytes obtained for the fission neutron therapy facility MEAPP at the research reactor FRM II. Radiat. Environ. Biophys., 48:67-75.
     (G8) Schmid, E., Schlegel, D., Guldbackke, S., Kapsch, R. –P. and Regulla, D. (2003): RBE of nearly monoenergetic neutrons at energies of 36 keV-14.6 MeV for induction of dicentrics in human lymphocytes. Radiat. Environ. Biophys., 42, 87-94.
     (G9) Bauchinger, M., Koester, L., Schmid, E., Dresp, J. and Streng, S. (1984): Chromosome aberrations in human lymphocytes induced by fission neutrons. Int. J. Radiat. Biol., 45, 449-457.
     (G10) Schmid, E., Schraube, H. and Bauchinger, M. (1998): Chromosome aberration frequencies in human lymphocytes irradiated in a phantom by a mixed beam of fission neutrons and γ-rays. Int. J. Radiat. Biol., 73:263-267.

     (H1) Lloyd, D. C., Edwards, A. A., Prosser, J. S., Finnon, P. and Moquest, J. E. (1988): In vitro induction of chromosomal aberrations in human lymphocytes, with and without boron 10, by radiations concerned in boron neutron capture therapy. Br. J. Radiol., 61:1136-1141.

     (H2) Edwards, A. A., Lloyd, D. C. and Prosser, J. S. (1990): The induction of chromosome aberrations in human lymphocytes by 24 keV neutrons. Radiat. Protect. Dosimet., 31:265-268.
     (H3) Aghamohammadi, S. Z., Goodhead, D. T. and Savage, J. R. K. (1989): Production of chromosome aberrations, micronuclei, and sister-chromatid exchanges by 24-keV epithermal neutrons in human G0 lymphocytes. Mutation Res., 211, 225-230.
     (H4) Lloyd, D. C., Purrott, R. J., Dolphin, G. W. and Edwards, A. A. (1976): Chromosome aberrations induced in human lymphocytes by neutron irradiation. Int. J. Radiat. Biol., 29:169-182.
     (H5) Lloyd, D. C., Purrott, R. J., Reeder, E. J., et al. (1978): Chromosome aberrations induced in human lymphocytes by radiation from 252Cf. Int. J. Radiat. Biol., 34:177-186.
     (H6) Lloyd, D. C., Edwards, A. A., Prosser, J. S., et al.. (1984): Chromosome aberrations induced in human lymphocytes by D-T neutrons. Radiat. Res., 98:561-572.

     (O1) Dobson, R. L., Straume, T., Carrano, A. V., Minkler, J. L., Deaven, L. L., Littlefield, L. G. and Awa, A. A. (1991): Biological effectiveness of neutrons from Hiroshima bomb replica: Results of a collaborative cytogenetic study. Radiat. Res., 128:143-149.
     (O2) Vulpis, N., Tognacci, L. and Scorpa, G.. (1978): Chromosome aberrations as a dosimetric technique for fission neutrons over the dose-range 0.2-50 rad. Int. J. Radiat. Biol., 33: 301-306.
     (O3) Fabry, L., Leonard, A. and Wambersie, A. (1985): Induction of chromosome aberrations in G0 human lymphocytes by low doses of ionizing radiations of different quality. Radiat. Res., 103:122-134.